Molecular control to salt tolerance mechanisms of woody plants: recent achievements and perspectives

Key message

Woody plants have salt-tolerant mechanisms similar to those developed by non-woody plants. Among others, compartmentalization of ions, production of compatible solutes, synthesis of specific proteins and metabolites, and induction of transcriptional factors are the most relevant. Woody plant-associated microbial interactions as well as naturally stress-adapted trees are resources that deserve to be deepened to fully understand the tolerance mechanisms.

Abstract

Context The high variability of salinity responses found in woody plants implies a high potentiality for germplasm selection and breeding. Salt tolerance mechanisms of plants are regulated by numerous genes, which control ion homeostasis, production of compatible solutes and specific proteins, and activation or repression of specific transcription factors. Despite the fact that numerous studies have been done on herbaceous model plants, knowledge about salt tolerance mechanisms in woody plants is still scarce.
Aims The present review critically evaluates molecular control of salt tolerance mechanisms of woody plants, focusing on the regulation and compartmentalization of ions, production of compatible solutes, activation of transcription factors, and differential expression of stress response-related proteins, including omics-based approaches and the role of plant-microbial interactions. The potential identification of genes from naturally stress-adapted woody plants and the integration of the massive omics data are also discussed.
Conclusion In woody plants, salt tolerance mechanisms seem not to diverge to those identified in non-woody plants. More comparative studies between woody and non-woody salt tolerance plants will be relevant to identify potential molecular mechanisms specifically developed for wood plants. In this sense, the activation of metabolic pathways and molecular networks by novel genetic engineering techniques is key to establish strategies to improve the salt tolerance in woody plant species and to contribute to more sustainable agricultural and forestry systems.

Keywords
Salt tolerance mechanisms; Omics responses; Salt tolerance stress-related proteins; Transcription factors; Naturally stress-adapted woody plants

Publication
Llanes, A., Palchetti, M.V., Vilo, C. et al. Molecular control to salt tolerance mechanisms of woody plants: recent achievements and perspectives. Annals of Forest Science 78, 96 (2021). https://doi.org/10.1007/s13595-021-01107-7

For the read-only version of the full text:
https://rdcu.be/cBClD

Handling Editor
Ana Rincón

Topical collection
This article is part of the Topical Collection “Current issues in forest and wood science: series of reviews

 

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.