The flexural lumber properties of Pinus patula Schiede ex Schltdl. & Cham. improve with decreasing initial tree spacing

Key message
An increase in the stiffness of lumber with a decrease in initial tree spacing was confirmed for Pinus patula Schiede ex Schltdl. & Cham. The underlying properties of microfibril angle, wood density and knot frequency explained 71% of the variation in lumber stiffness. Tree spacing also influenced wood properties independent of radial growth rate.

Abstract
Context Rapid growth rates and reduced harvesting ages of South African-grown pine plantations have caused a reduction in the stiffness of structural lumber, which accounts for about 75% of all sawn wood. Microfibril angle and wood density are known to influence wood stiffness, which may be manipulated by the growing space of trees.
Aims The objective of this study was to evaluate the effect of slower growth rates, caused by narrow tree spacing, on the suitability of Pinus patula Schiede ex Schltdl. & Cham. wood for structural lumber.
Methods An 18- and a 19-year-old spacing experiment with four levels of initial tree spacing (1.83 m × 1.83 m, 2.35 m × 2.35 m, 3.02 m × 3.02 m and 4.98 m × 4.98 m) were sampled. Linear and non-linear mixed-effects models were developed to examine the effect of tree spacing on the quality of wood and lumber as defined by the modulus of elasticity, modulus of rupture and knot frequency of 208 boards and the ring-level microfibril angle and wood density of 86 radial strips.
Results Wood and lumber quality improved with decreasing spacing, and only the narrowest spacing had lumber that conformed to the requirements of the lowest South African structural grade. Microfibril angle, wood density and knot frequency explained 71% of the variation of lumber stiffness. After accounting for ring width differences, there remained a significant effect of initial spacing on the parameters of models predicting microfibril angle and wood density.
Conclusion Wide initial spacing is discouraged if higher strength grades are desired for Pinus patula lumber.

Keywords
Wood quality, Initial spacing, Modulus of elasticity, Microfibril angle, Wood density

Publication
Erasmus, J., Drew, D.M. & Wessels, C.B. The flexural lumber properties of Pinus patula Schiede ex Schltdl. & Cham. improve with decreasing initial tree spacing . Annals of Forest Science 77, 73 (2020). https://doi.org/10.1007/s13595-020-00975-9

For the read-only version of the full text:
https://rdcu.be/b5Nwx

Data availability
The datasets generated and/or analysed during the current study are available in the SUNScholarData repository (Erasmus et al. 2020), https://doi.org/10.25413/sun.12241268

Handling Editor
Alexis Achim (Guest Editor)

Topical Collection
This article is part of the Topical Collection “Frontiers in Modelling Future Forest Growth, Yield and Wood Properties

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.