Climate variability strongly influences the profitability of grazing. Scientists Nguyen-Huy et al. demonstrate that graziers can strategically move their production to other areas based on changing seasonal climate conditions. They also show that using climate information and geographic risk spreading strategies together can help graziers minimize climate risk, while not sacrificing profitability. The approach is applicable to other parts of the world and could be used to optimize risk and profitability for other agricultural sectors exposed to variable climatic conditions.
Climate change
Climate change and cacao
The future of chocolate production is dependent on how the cacao tree will respond to climate change. Scientists Lahive et al. review current research on the physiological responses of cacao trees to the environment and advocate for greater consideration of tree physiology when discussing the future of cacao production. They also highlight key areas of research that need to be addressed to aid in the development of more climate resilient cacao for the future.
‘Gobi agriculture’ – producing fruit and vegetable on desert-like land
Shortage of arable land creates unprecedented challenges to produce enough food to satisfy the increased food demands. Scientists Xie et al. show that the desert-like, non-arable land can be developed by building ‘clusters’ of solar-energy greenhouses in which land productivity is higher and crop water use efficiency greater than in traditional open-field, irrigated cultivation systems. Although many challenges remain to be addressed, this innovative system has potential for areas with available barren land.
Climate-smart agriculture requires efforts at both the supply- and demand-side
The twin challenges of climate change and food security call for climate-smart agriculture, that is to say agriculture that helps to mitigate and adapt to climate change. Scientists Scherer and Verburg review the potentials and trade-offs of climate-smart agricultural measures taken by producers and consumers, and identify their linkages. They advocate not solely focusing research and implementation on one-sided measures but designing good, site-specific combinations of both demand- and supply-side measures to use the potential of climate-smart agriculture more effectively.
The tricky management of heat stress in wheat
Heat stress lowers wheat growth and productivity. Agronomists Akter and Islam review some appropriate strategies able to improve wheat yield under extreme heat stress. These include the choice of cultivars, the management of soil moisture and nutrients, the adjustment of planting time and the use of exogenous protectants. It remains, however, that the overall success of the complex wheat heat stress management will depend on the prospective collaboration of crop modelers, molecular biologists, and plant physiologists.
Planting Azolla to reduce methane emission from rice
Reducing methane emission and maintaining rice sustainable production are two major challenges in rice production. Scientists Xu et al. showed that planting the free-floating water fern Azolla along with double rice reduced methane emission in rice paddies due to significant effect on dissolved oxygen and soil redox potential, which are key factors for methane emission.
Greenhouse gas abatement costs in Australian agriculture
Agriculture contributes significantly to greenhouse gas emissions and there is a need for identifying viable long term reduction steps that farmers can adopt. Scientists Dumbrell et al. identified the greenhouse gas mitigation potential and the costs of abatement at three Australian grain farms located in the main grain growing regions of Australia. They found marked difference in abatement potential and impact on operating profits across case study farms and management practices. Reaching significant climate change abatement will come at a cost to farmers.
The performance of open-pollinated maize cultivars
There is a feeling that hybrids are better adapted than open-pollinated cultivars to manage with climate change. However, scientists Lana et al. investigated maize cultivars responses to temperature and precipitation changes and report an equivalent or even better resilience of open-pollinated cultivars compared with hybrids to yield losses under adverse conditions.
Oat landraces adapted to drought and high temperatures
Commercial oat cultivars produce higher yields in temperate regions than in dry and hot areas. Agronomists Sánchez-Martín et al. studied oat landraces and found that these wild relatives should outperform commercial varieties under harsh conditions.
Farming tactics to reduce agricultural carbon footprints
How to increase grain yield and decrease the impact of agriculture on climate? Liu et al. found in the literature seven key farming practices that increase crop yields by 15-59%, decrease carbon footprints by 25-34% and decrease greenhouse gas emissions by 25-50%.